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The asymmetric Mannich reaction is one of the most important
protocols for the synthesis of optically pure amine compounds, and
significant progress has been made catalyzed by chiral metal com-
plexes or small organic molecules over the past years.1 On the other
hand, the vinylogous variant of the Mannich reaction (γ-aminoalkyl-
ation ofR,â-unsaturated carbonyl compounds) has gained increasing
attention because in principle it offers facile access to com-
plicated and highly functionalizedδ-amino compounds.2 Neverthe-
less, this method is only beginning to be synthetically employed
in comparison with the well developed vinylogous aldol reaction.3

Although diastereoselective vinylogous addition of previously modi-
fied dienol ethers to chiral iminium ions is quite fruitful,4 the ex-
ploration on catalytic asymmetric vinylogous Mannich (AVM) pro-
cess is still in its infancy. Furthermore, the reported few examples
in this area are confined to utilize cyclic siloxyfurans or methoxy-
furan as the vinylogous equivalents.5 Therefore, the development
of new version of catalytic AVM reaction is in high demand.

Recently we have successfully developed a series of highly
asymmetric direct vinylogous Michael reactions ofR,R-dicyanoole-
fins promoted by various amine catalysts.6 However, their applica-
tions as readily available and versatile vinylogous synthons have
not been well addressed, especially in asymmetric 1,2-addition C-C
bond-forming reactions. In view of the particular importance and
challenges of catalytic AVM reaction, we realize the enormous
potential of the reaction ofR,R-dicyanoolefins and simple imine
substrates. Here we would like to describe the first highly regio-
and stereoselective direct vinylogous Mannich reaction with a
diverse array ofR,R-dicyanoolefins andN-Boc aldimines.

Chiral hydrogen-bonding donors such as thioureas (TU) have
exhibited good activating capacity for imines in a number of
enantioselective reactions.7,8 In combination with the experiences
in the facile deprotonation ofR,R-dicyanoolefins,6a,dwe envisaged
thatN-Boc aldimine andR,R-dicyanoolefin might be synergistically
activated by a chiral bifunctional thiourea-tertiary amine organo-
catalyst,9 hence the direct asymmetric vinylogous Mannich reaction
would be facilitated (eq 1).

In light of such consideration, we first investigated the vinylogous
reaction ofR,R-dicyanoolefin2a and N-Boc aldimine3a in the
presence of thiourea1a (Figure 1, 10 mol %) derived from
cinchonine.9a Gratifyingly, the addition reaction proceeded readily

at room temperature (20°C), and the desired vinylogous Mannich
product4aawas isolated in high yield after 6 h with complete regio-
and diastereoselectivity, while the ee was modest (Table 1, entry
1). Encouraged by the promising results, a range of bifunctional
catalysts1b-d with various chiral scaffolds were screened (entries
2-4). The structurally more rigid catalyst1d9d exhibited much
better enantioselectivity (entry 4, 89% ee). Interestingly, the ee was
even elevated with thiourea catalysts1eand1f bearing less electron-
withdrawing groups (entries 5 and 6). Finally we delightfully found
that the enantiopure product was directly attained, promoted by
Berkessel’s catalyst1g9e,f with a aliphatic cyclohexyl substitution,
probably owing to both electronic and steric reasons (entry 7).
Moreover, the catalyst loading could be decreased without affecting
the enantioselectivity (entries 8 and 9), andan excellent ee was
still achieVed in almost quantitatiVe yield employing only 0.1 mol
% of 1g (entry 10).10 To the best of our knowledge, it represents

† West China School of Pharmacy, Sichuan University.
‡ Chengdu Institute of Biology.
§ West China Hospital, Sichuan University.

Figure 1. The structures of bifunctional organocatalysts.

Table 1. Screening Studies of Organocatalytic Vinylogous
Mannich Reaction of R,R-Dicyanoolefin 2a and N-Boc
Benzaldimine 3aa

entry catalyst (mol %) t (h) yieldb (%) eec,d (%)

1 1a (10) 6 89 55
2 1b (10) 6 89 61
3 1c (10) 6 91 80
4 1d (10) 6 99 89
5 1e(10) 6 99 93
6 1f (10) 6 99 96
7 1g (10) 6 99 99
8 1g (2) 8 99 99
9 1g (0.5) 16 99 99
10 1g (0.1) 24 98 98

a Reactions performed with 0.1 mmol of2a, 0.12 mmol of3a, in 1 mL
of toluene at room temperature.b Isolated yield.c Determined by chiral
HPLC analysis.d The absolute configuration was determined by X-ray
analysis.
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the highest substrate/catalyst (S/C) ratio for this type of bifunctional
organocatalysts since the pioneering work of Takemoto.8d,9d

The generality of the direct AVM was investigated with a variety
of R,R-dicyanoolefins (Figure 2) andN-Boc aldimines catalyzed
by 2 mol % of1g at room temperature overnight (Table 2). The
reaction scope proved to be quite broad with respect to both types
of substrates. Complete diastereoselectivity (if involved) was de-
tected except the case of2j. Excellent stereocontrol was observed
in the reactions ofN-Boc benzaldimine3a andR,R-dicyanoolefins
derived from cyclic aryl ketones (entries 1-4), acyclic aryl ketones
(entries 5-7), and cyclic aliphatic ketones (entries 8 and 9). Acyclic
aliphatic2j gave two separable disastereomers, and a remarkable
ee (98%) was obtained for the major adduct (entry 10). In addition,
a better dr value could be attained at 0°C (entry 11). Notably, a
simpleR,R-dicyanoolefin2k from linear aldehyde also showed high
reactivity and enantiomerically pure product was gained in quantita-
tive yield (entry 12). Furthermore, excellent results were achieved
in the asymmetric reactions ofR,R-dicyanoolefin2a and N-Boc
aryl and heteroaryl aldimines with diverse substitutions (entries 13-
18).11

As illustrated in Scheme 1, compound5 with three contiguous
chiral centers was stereoselectively produced with Hantzsch ester
as the hydride reductant.6a,b Then simple hydrolysis in refluxing
concentrated HCl gave the desiredδ-amino acid, which was easily
converted to theδ-lactam6 in the presence of (Boc)2O.

In conclusion, we have developed the first direct asymmetric
vinylogous Mannich reaction promoted by a simple bifunctional

thiourea-tertiary amine catalyst. The unprecedented reaction is
highly regio- and stereoselective and practical for a broad spectrum
of substrates (generally>99% de, 96 to>99.5% ee) at room
temperature, andS/C up to 1000 could be applied without effects
on the excellent enantiocontrol. Moreover, aδ-amino acid derivative
with multiple chiral centers could be efficiently prepared from the
adduct. Further studies are actively underway to expand the scope
and application of this valuable reaction.
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Figure 2. The structures of variousR,R-dicyanoolefins.

Scheme 1. Synthesis of Chiral δ-Lactam

Conditions: (i) Hantzsch erster, 91%; (ii) concentrated HCl, then
(Boc)2O, K2CO3, 91%.

Table 2. Asymmetric Direct Vinylogous Mannich Reaction of
R,R-Dicyanoolefins 2 and N-Boc Aldimines 3a

entry sub. 2 R (3) product 4 yieldb (%) eec (%)

1 2a Ph (3a) 4aa 99 99
2 2b Ph (3a) 4ba 99 98
3 2c Ph (3a) 4ca 99 97
4 2d Ph (3a) 4da 99 99
5 2e Ph (3a) 4ea 99 99
6 2f Ph (3a) 4fa 99 99
7 2g Ph (3a) 4ga 94 99
8 2h Ph (3a) 4ha 99 99
9 2i Ph (3a) 4ia 99 98
10d 2j Ph (3a) 4ja 67(32) 98(78)
11d,e 74(17) 98(78)
12 2k Ph (3a) 4ka 99 99
13 2a p-F-Ph (3b) 4ab 94 >99
14 2a p-MeO-Ph (3c) 4ac 99 99
15 2a m-Cl-Ph (3d) 4ad 99 98
16 2a o-Cl-Ph (3e) 4ae 99 >99.5
17 2a 2-thienyl (3f) 4af 99 98
18 2a 2-furanyl (3g) 4ag 99 96

a Reactions performed with 0.1 mmol of2, 0.12 mmol of3, 2 mol % of
1g in 1 mL of toluene at room temperature overnight.b Isolated yield.
c Determined by chiral HPLC analysis. The relative and absolute config-
uration of products was assigned by analogy to4aa. d Data in bracket is of
the separable minor diastereomer.e At 0 °C in xylene for 24 h.
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